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We study the dynamics of the spread of an infectious disease within a population partitioned into house-
holds, and stratified into resistant and nonresistant individuals. Variability in the level of resistance between
households increases the initial rate of spread of the infection, as well as the infection level at the endemic
equilibrium. This phenomenon is seen even when all individuals in the population are equally likely to be
resistant, and can also be predicted by including spatial clustering of resistant individuals within an improved
mean-field approximation.
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Growing evidence from both empirical and theoretical
studies shows that the spatial structure of hosts affects the
dynamics of infectious diseases among both human and
wildlife populations �1–5�, as well as the spread of malicious
software among computers or other information within social
networks �6–18�. The spatial arrangement of individuals, and
the frequency and spatial scale of interactions between indi-
viduals may affect the dynamics just as much as fundamental
parameters such as contact and recovery rates �19–21�. Simi-
larly, in ecological systems, the presence of spatially clus-
tered uninhabitable sites and the spatial scale of dispersal
strongly affect population dynamics �22,23�. In epidemiol-
ogy, the importance of host connectivity has been observed
in a variety of topologies, including lattices, small-world and
scale-free networks �8,24–27�. In this paper, we examine the
dynamics of an infectious disease in a population with local-
ized hierarchical structure. Because real biological and social
networks include variability in susceptibility, our model also
includes resistant individuals which are distributed in a clus-
tered fashion.

Consider a continuous-time SIS-R epidemiological model
applied to a fixed population of N individuals partitioned into
n2 groups referred to as households, although the groups may
represent cities, dormitories within a university, or other sec-
tors of a population. Each household contains n1 individuals.
Some individuals in the population are geographically fixed
and resistant to the infectious disease being considered,
while other individuals are highly mobile, and susceptible to
infection. One example of such a structured population
would be the case where households represent cities; the
population is divided into a relatively wealthy class which is
resistant to infection due to better living conditions and
health care, and a class of relatively impoverished migrant
workers who often move from one region to another and
who are susceptible to infection.

Denote the proportion of individuals in household k who
are resistant by Rk. Individuals may also be susceptible �Sk�
or infectious �Ik�, and note that Sk+ Ik+Rk=1. Each infectious
individual contacts and attempts to infect others at rate �
�0, with the amount of mixing between households deter-
mined by the parameter �. Each contact is with an individual

chosen at random from among the entire population with
probability �, and otherwise with an individual chosen at
random from within the same household. When an infectious
individual contacts a susceptible individual, the latter be-
comes infectious; contacting another infectious individual or
a resistant individual has no effect. Finally, each infectious
individual independently recovers to the susceptible state at
rate ��0. This is therefore essentially an SIS model, but
with the presence of fixed resistants and partitioning into
households; this is a generalization of a previous household
epidemiological model �26� combined with the spatially dis-
tributed unsuitable habitat �in the form of resistant individu-
als� from prior ecological models �22,23�. This model differs
from previous network or lattice-based systems, such as
those in Refs. �3,8,9�, because here every individual is con-
nected with every other individual �i.e., it is a fully con-
nected graph� but the probabilities or rates of attempting in-
fections along different connections are not equal.

Taking the expectation over stochastic realizations of the
system, as will be done implicitly throughout development of
the model, yields the continuous-state differential equation
for Ik

dIk

dt
= E�I���Sk + Ik��1 − ��Sk − �Ik, �1�

where the three terms represent between-household infec-
tion, within-household infection, and recovery, respectively.
Note that the term E�I� is a population mean taken over all
households, E�I�= 1

n2
�k=1

n2 Ik, representing the probability that
a randomly chosen individual from the entire population is
infectious. The differential equation for Sk is simply dSk /dt
=−dIk /dt, and dRk /dt=0 because resistant individuals are
fixed.

To construct an analytically tractable model, take the ex-
pectation over households of Eq. �1�, which gives

dE�I�
dt

= ���E�I�E�S� + �1 − ��E�IS�� − �E�I� . �2�

The standard mean-field approximation for models of this
type assumes that all individuals are well-mixed among the
population and there are no spatial correlations in any state
variables, which implies E�IS��E�I�E�S�. This simplifies
the above differential equation into the following form, drop-*Electronic address: hiebeler@math.umaine.edu
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ping the explicit “E�·�” notation for simplicity:

dI

dt
= ��IS + �1 − ���IS − �I = I��S − ��

= I���1 − R − I� − �� .

Notice that � cancels from the model, as the mean-field ap-
proximation neglects all spatial information; assuming com-
plete mixing is equivalent to assuming �=1. This model is a
continuous-time logistic equation which may be written in
the standard form dx /dt=rx�1−x /K�. The initial rate of
spread of the infection will be r=��1−R�−�, the long-term
�equilibrium� proportion of infectious individuals will be K

=1−R−� /�, and therefore proportion K̃=1−� / ���1−R��
of nonresistant individuals will be infectious at equilibrium,
assuming � /��1−R. If the latter condition is violated, the
model predicts that the infection will fail to spread, and the
system will reach a steady-state distribution in which all non-
resistants will be susceptible. The basic reproductive number
for this version of the model is R0=��1−R� /�, and the con-
dition for persistence of the infection does correspond to
R0�1.

Now define Q as the probability that if a randomly chosen
nonresistant individual selects an individual within the same
household �a “housemate”�, the selected housemate will also
be nonresistant. Q is a measure of the clustering among non-
resistant individuals. Following �26�, this clustering Q is
given by

Q =
E��1 − R�2�

E�1 − R�
,

where the expectations are taken over households.
Next, we will develop an improved mean-field approxi-

mation by including the �fixed� spatial structure of resistant
individuals; it can be interpreted as a local-dispersal as op-
posed to infinite-dispersal mean-field approximation �28,29�.
To approximate E�IS� in Eq. �2�, observe that because of the
definition of Sk and Ik, E�IS� can be interpreted as the prob-
ability that among two individuals chosen independently at
random from the same randomly selected household, the first
is infectious and the second is susceptible. This may be bro-
ken into the product of the marginal probability that the first
individual is infectious, and the conditional probability that
the second is susceptible given that the first is infectious. The
latter may be further broken down into the product of the
probabilities that the second individual is nonresistant, and
that it is susceptible given that it is nonresistant. The above
expansions, together with the assumption that susceptible
and infectious individuals are well mixed, yields the relation
E�IS�=E�I�QE�S� / �1−E�R��, which when substituted into
Eq. �2� yields

dI

dt
= I���1 − R − I��� +

�1 − ��Q
1 − R

	 − �
 . �3�

Observe that this improved mean-field approximation now
includes �, as well as information about both the overall
density and clustering of individuals, both resistant and non-
resistant.

The improved mean-field approximation given by Eq. �3�
is still in the form of a continuous-time logistic equation,
where the initial rate of spread of the infection is given by
r=���1−R�+��1−��Q−� and the equilibrium proportion
of nonresistant individuals who are infectious at equilibrium
is K̃=1−�����1−R�+��1−��Q�−1. Both of these quantities
increase as � increases and as � decreases, as expected. But
now the spatial clustering as well as the overall level of
resistance in the population also affect the initial rate of
spread and the long-term level of infection. Because infec-
tions are more likely to initially arise in households with
large numbers of nonresistants �assuming all susceptibles are
equally likely to be the initial source of the infection�, in-
creasing either the clustering Q of nonresistants or the
amount of intrahousehold contacts 1−� increases r. This ef-
fect persists even to the steady-state distribution, i.e., increas-
ing clustering Q or intrahousehold contacts 1−� also in-

creases the proportion K̃ of nonresistants infected at the
steady-state, as long-distance �interhousehold� contacts are
more likely to encounter resistant individuals. The results
involving � can be derived mathematically from the model
using the fact that Hölder’s inequality implies Q�E�1−R�,
which in turn implies �r /���0 and �K̃ /���0 �with equal-
ity only if Q=E�1−R�, which occurs when all households
have the same number of resistant individuals�. The basic
reproductive number for the improved model is R0=����1
−R�+ �1−��Q� /�, and the endemic equilibrium is biologi-

cally feasible �satisfies K̃�0� when R0�1.
One noteworthy feature of this model is that the response

of r and K̃ to changes in parameters deviate from predictions
of the ordinary mean-field approximation even when the re-
sistants are distributed according to what would typically be
considered a null model, i.e., every individual in the popula-
tion is resistant independently with a fixed probability E�R�.
In that case, the number of resistants �and nonresistants� in
each household follows a binomial distribution, perhaps ap-
proximated by a Poisson if the number of households is large
and frequency of resistance is low. Because Q�E�1−R� in

this case, both r and K̃ are elevated above what their levels
would be in a population where all households have the same
number of resistants, in which E��1−R�2�= �E�1−R��2 and
therefore Q=E�1−R�.

The above conclusions regarding the initial rate of spread
r of the disease are still valid even if the assumption of
mixing among susceptible and infectious individuals is re-
laxed. Removing this assumption changes the transient dy-
namics and steady-state distribution of the system, but not
the initial short-term behavior. As long as infections are
equally likely to initially appear among all susceptibles with
equal probability, the behavior of the system as a perturba-
tion near the disease-free equilibrium will be dominated by
the distribution of resistant hosts. This differs from lattice
models, where spatially localized clustering immediately
dominates the dynamics �30�. In the model studied here, as-
suming the number of individuals per household n1 is large,
because individuals within a household all interact equally
each household behaves like a standard epidemiological sys-
tem with mass action dynamics with additional infection at-
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tempts from the other households. That is, we have many
coupled systems, each of which has internal dynamics corre-
sponding to a well-mixed system. Because of the large
neighborhood size, the improved mean-field approximation
accurately predicts the initial growth rate r; the large neigh-
borhood size together with the assumption of mixing of sus-
ceptible and infectious individuals allows the approximation

to accurately predict the steady-state distribution K̃. Both of
these results have been confirmed via stochastic simulations
of the system, as displayed in Figs. 1 and 2. The largest
difference in E�I� between the ODE model developed here
and stochastic simulations as shown in Fig. 1 had magnitude
less than 5.2	10−4; the largest difference between simula-
tions and predictions in Fig. 2 had magnitude less than 7.6
	10−4. As the number of individuals per household becomes
larger, these differences will decrease, as stochastic fluctua-
tions play a less important role and the continuum approxi-
mation made within each household becomes more accurate.
Note however that the ultimate fate of the system, which
must be fixation to the disease free equilibrium �DFE� where
E�I�=0, will be determined by noise, which has been ne-
glected from this model. But for populations which are not
too small and for the parameter values explored here, the
system generally persists for very long times at a fixed qua-
sistationary equilibrium, conditioned on the fact that it has
not gone to fixation to the DFE �31�.

As seen in a related model without mixing and without
resistant individuals �26�, decreasing the amount � of inter-
household contacts slows the initial spread of an infectious

disease, as infectious individuals become clustered and are
therefore less likely to encounter susceptible individuals to
infect. This is in stark contrast to the results observed here,
where decreasing � actually increases the initial rate of
spread of the infection as well as the final equilibrium infec-
tion level, as seen in Fig. 1. Figure 2 shows that this effect
becomes stronger as the clustering Q of nonresistants in-
creases. In a system without mixing of susceptible and infec-
tious individuals but still containing spatially clustered resis-
tant individuals and both intra- and interhousehold contacts
�0���1�, the two opposing influences of clustered infec-
tious and resistant individuals will both play a role in the
dynamics; either effect may play a more dominant role, de-
pending on the amount of clustering of resistants and the
extent of interhousehold contact among individuals. Accu-
rately predicting the transient dynamics of such a system
would require an expanded model including equations de-
scribing the dynamics of higher moments, e.g., as in Ref.
�26�. As shown here, for a model with mixing of susceptible
and infectious individuals but fixed resistant individuals,
clustering of the fixed portion of the population can have a
dramatic influence on the dynamics of epidemics on
household-structured populations, yet the dynamics can still
be accurately predicted by mathematical approximations
when this clustering is included within the mean-field ap-
proximation framework.

This work was conducted with financial support from the
University of Maine Office of the Vice President for Re-
search.

FIG. 1. Mean results of stochastic simulations �solid lines� to-
gether with predictions from the ODE model �dashed lines�, show-
ing the proportion of nonresistant individuals infected E�I� /E�1
−R� over time. Parameters were �=2, �=1, 300 households each
containing 300 individuals, E�1−R�=0.1, E��1−R�2�=0.09 giving
Q=0.9, with 5% of susceptible hosts initially infectious. Error bars
on simulation curves show ±1 standard deviation among 20 repli-
cate simulations. The value of � increases from 0.05 to 1 moving
from the upper curve to the lower curve.

FIG. 2. Mean results of stochastic simulations �solid lines� to-
gether with predictions from the ODE model �dashed lines�, show-
ing the equilibrium proportion of nonresistant individuals infected
E�I� /E�1−R� as a function of clustering Q. Parameters were: �
=2, �=1, 300 households each containing 300 individuals, E�1
−R�=0.1, with 5% of susceptible hosts initially infectious. Error
bars on simulation curves show ±1 standard deviation among 20
replicate simulations. The value of � increases from 0.05 to 1 mov-
ing from the upper curve to the lower curve.

BRIEF REPORTS PHYSICAL REVIEW E 75, 022901 �2007�

022901-3



�1� B. M. Bolker, Bull. Math. Biol. 61, 849 �1999�.
�2� M. Boots and A. Sasaki, Ecol. Lett. 3, 181 �2000�.
�3� A. Grabowski and R. A. Kosiński, Phys. Rev. E 70, 031908

�2004�.
�4� M. J. Tildesley, N. J. Savill, D. J. Shaw, R. Deardon, S. P.

Brooks, M. E. Woolhouse, B. T. Grenfell, and M. J. Keeling,
Nature �London� 440, 83 �2006�.

�5� C. Viboud, O. N. Bjørnstad, D. L. Smith, L. Simonsen, M. A.
Miller, and B. T. Grenfell, Science 312, 447 �2006�.

�6� H. Hinrichsen, Adv. Phys. 49, 815 �2000�.
�7� A. L. Lloyd and R. M. May, Science 292, 1316 �2001�.
�8� R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,

3200 �2001�.
�9� R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 066117

�2001�.
�10� M. E. J. Newman, Phys. Rev. E 66, 016128 �2002�.
�11� M. E. J. Newman, I. Jensen, and R. M. Ziff, Phys. Rev. E 65,

021904 �2002�.
�12� M. E. J. Newman, S. Forrest, and J. Balthrop, Phys. Rev. E 66,

0351011�R� �2002�.
�13� J. M. Read and M. J. Keeling, Proc. R. Soc. London, Ser. B

270, 699 �2003�.
�14� J. Balthrop, S. Forrest, M. Newman, and M. M. Williamson,

Science 304, 527 �2004�.
�15� M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespig-

nani, J. Theor. Biol. 235, 275 �2005�.
�16� D.-U. Hwang, S. Boccaletti, Y. Moreno, and R. López-Ruiz,

Math. Biosci. Eng. 2, 317 �2005�.
�17� M. Keeling, Theor Popul. Biol. 67, 1 �2005�.
�18� J. Saramäki and K. Kaski, J. Theor. Biol. 234, 413 �2005�.
�19� H. Andersson and T. Britton, J. Appl. Probab. 35, 651 �1998�.
�20� F. Ball, D. Mollison, and G. Scalia-Tomba, Ann. Appl. Probab.

7, 46 �1997�.
�21� D. J. Watts, R. Muhamad, D. C. Medina, and P. S. Dodds,

Proc. Natl. Acad. Sci. U.S.A. 102, 11157 �2005�.
�22� D. Hiebeler, Ecology 81, 1629 �2000�.
�23� D. Hiebeler, Theor Popul. Biol. 66, 205 �2004�.
�24� M. A. M. de Aguiar, E. M. Rauch, and Y. Bar-Yam, Phys. Rev.

E 67, 047102 �2003�.
�25� D. Hiebeler, Lect. Notes Comput. Sci. 3515, 360 �2005�.
�26� D. Hiebeler, Bull. Math. Biol. 68, 1315 �2006�.
�27� C. Moore and M. E. J. Newman, Phys. Rev. E 61, 5678

�2000�.
�28� D. Hiebeler, J. Theor. Biol. 187, 307 �1997�.
�29� D. Hiebeler, J. Math. Biol. �to be published�.
�30� H. Matsuda, N. Ogita, A. Sasaki, and K. Sato, Prog. Theor.

Phys. 88, 1035 �1992�.
�31� L. J. Allen, Stochastic Processes with Applications to Biology

�Pearson Prentice Hall, Upper Saddle River, NJ, 2003�.

BRIEF REPORTS PHYSICAL REVIEW E 75, 022901 �2007�

022901-4


